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Abstract

In this paper an eigenvalue analysis approach is employed to obtain the solutions of the Luikov system of linear
partial differential equations addressed to the most general type of boundary conditions. The Luikov equations provide
a well established model for the analysis of various simultaneous heat and mass diffusion problems in capillary porous
bodies. However, analytical methods to achieve a complete and satisfactory solution of these equations is still lacking
in the literature because of noninclusion of the existence of a countable number of complex roots in almost all the
solutions. A specific example on contact drying of a moist porous sheet with uniform initial temperature and moisture
distribution is considered. The influence of the complex roots on the dimensionless temperature, moisture content, and
the local rate of drying is demonstrated. A set of benchmark results is obtained for reference purposes. © 1999 Elsevier

Science Ltd. All rights reserved.

Nomenclature

a,, diffusion coefficient of moisture in the material
[m*s~']

a, thermal diffusion coefficient [m”s~']

¢ specific moisture capacity [kg (moisture) (kg (dry
body) ' °M ]

¢, specific heat capacity [J kg ' K ']

R thickness of the layer of the moist material [m]

t time variable [s]

v temperature [°C]

w  moisture potential ["M]

x* space variable [m].

Greek symbols

o, convective moisture transfer coefficient [kg m =2 s~!
cM - 1]

a, convective heat transfer coefficient [W m—> K ']

yo density of the dry portion of the moist body [kg m ]

* Corresponding author: New F/6, Jodhpur Colony, Banaras
Hindu University, Varanasi 221005, India.

6 thermogradient coefficient ["M K ']

¢ ratio of vapour diffusion coefficient to that of total
moisture diffusion or evaporation number

Jm moisture conductivity coefficient [kgm ="' s~ °M ']
4, thermal conductivity coefficient [Jm~'s ' K ']

p heat of phase change [J kg™ '].

Subscripts

s ambient

p equilibrium with ambient
0 initial condition.

1. Introduction

The importance of heat and mass transfer in capillary
porous materials has increased in the last few decades
due to its wide industrial as well as research applications.
Besides its various terrestrial applications (e.g., ground
water pollution, heat transfer and storage of solar energy
in the ground, packed columns in chemical industries,
drying and multiphase flow under non-isothermal con-
ditions), it is being widely used in space research
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especially in devices for liquid and energy transfer (heat
pipes, heat exchangers, insulation of highly conducting
wire nets, etc.) due to the fact that the performance of
capillary porous materials does not depend on a gravi-
tational field. As a result there is a continuously increas-
ing research activity in the field of heat and mass transfer
in capillary porous media. But because of the com-
plexities of the mechanism involved in the transport pro-
cesses through irregular void configuration in porous
bodies, only limited success has been achieved in mod-
elling the process.

In order to describe the history of moisture transfer in
capillary porous bodies, the dependence on the relevant
material characteristics, such as, the topology of solid
matrix, interface phenomena among solid, liquid,
gaseous vapour and air and liquid—vapour equilibria
must be taken into account. The phenomena appropriate
for moisture, pressure, and enthalpy distributions are
coupled. A diffusion theory with a linear or non-linear
coefficient of diffusivity will not serve the purpose for
description of the behaviour of mass transfer in a capil-
lary porous body. The transport of associated matter of
all phases and the transfer of enthalpy must be considered
simultaneously. Therefore, a general mathematical model
for multi-phase moisture transfer in capillary porous
bodies must be formulated. Various theoretical models
have been proposed [1-8] in the past. Most of these
models have not been able to predict the drying rate and
the distribution of temperature and moisture potentials
for both hygroscopic and non-hygroscopic materials over
a wide range of boundary conditions and drying regimes.
Luikov [2] developed a uniquely different model for sim-
ultaneous heat and moisture transfer in capillary porous
materials, which is based on non-equilibrium ther-
modynamics. This model is applicable for both hygro-
scopic and non-hygroscopic materials. It is interesting to
note that the model proposed by Krischer [1] is identical
to that of Luikov and the model proposed by De-Vries
[3] is similar to that of Luikov [2]. However, the Luikov
system of equations is a non-linear system because the
transport coefficients and the thermodynamic properties
(specific heat, thermogradient coefficient, etc.) are func-
tions of either moisture content or temperature or both.
In order to make the system more mathematically trac-
table Luikov and Mikhailov [9] suggested that if cal-
culation of time dependent heat and mass transfer is
carried out by zones, in each of which the transport
coefficients are taken as constant (average value for each
zone), then with the considerable simplification of the
system of equations itself, one may obtain good agree-
ment between calculation and experiment. In doing so
the results arrived at and the results expected do not
match so well, but on the other hand it is possible to
make a qualitative analysis of the influence of transfer
coefficients on the moisture and temperature potentials.
The results obtained through such an approach are well

known [10]. Therefore, an efficient method of solution
for the linear system with constant transport coefficients
plays an important role in solving the nonlinear system
of equations. For linear problems formal exact solutions
were obtained by a number of workers. Some of these
contributions were also summarized in the monographs
of Luikov [2, 11] Luikov and Mikhailov [9], Mikhailov
and Ozisik [12], Shukla [13] and others [14, 15], which
deal with basic mathematical tools behind such devel-
opments, integral transforms method. Later on, Rossen
and Hayakawa [16], Lobo et al. [17], Liu and Cheng [18]
noticed that several of the early computational work
could be in error, mainly for those results reported at the
early times, because of noninclusion of complex roots in
such earlier contributions. These authors reported
numerical difficulties in computing the complex con-
jugate characteristic roots, confining their evaluations to
one single pair. In view of the limited usefulness of the
formal exact solution, Ribeiro et al. [19] proposed an
alternative approximate solution to Luikov equations in
linear formulation which does not require evaluation of
complex eigenvalues.

The present authors have developed a novel technique
that provides complete and satisfactory solutions to such
system subject to specified initial and surface conditions.
Here it is applied to obtain the temperature and moisture
distributions during contact drying of a moist porous
sheet. Further, the complex characteristic roots are found
by a new technique [20] which is a combination of the
bisection and Newton—Raphson methods. This technique
evaluates simultaneously real as well as a number of pairs
of complex conjugate roots. A set of bench mark results is
obtained. The previous analytical solutions are critically
examined and compared with existing results, and it has
been found that earlier results are in error due to non-
inclusion of the complex roots not accounted for in such
earlier contributions [2, 6, 8, 11-14, 21]. The importance
of the present study is: (i) our method of solution has
general application to the problems of simultaneous heat
and mass transfer in capillary porous bodies, (ii) the
methodology for obtaining the real as well as complex
roots is quite different from that of Lobo et al. [17] and
Liu and Cheng [18] methods, because it evaluates real
and a number of pairs of complex conjugate roots, (iii)
numerical results obtained by the present technique may
serve to check the accuracy of any numerical methods
such as finite difference and finite element techniques
when applied to solving such types of problems.

2. Problem formulation

The proposed approach is demonstrated for sim-
ultaneous heat mass transfer within a porous moist sheet
which is in contact with a hot plate. Without loss of
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generality the problem formulation in dimensionless
form can be written as [21]

0T(> 0> T 020
¢ (,:C’T)=(1+sKoLuPn)M—sKoLuw
0 x? ox?
O<x<lt>0). (1)
200 22T 20(,
d0(x, 1) _ —LuPno (x,7) +Lu0 0(x, 1)

ot ox? 0x?
O<x<l,t>0). (2

The initial and boundary conditions for the present study
are given as follows:

T(x,0) = g,(x); 0(x,0) = g2(x), 0<x<I. 3)
TOD _ i e>0 @
ox
00,1, 970.7) =0, 1>0 ©)
ox ox
am D AT+ BOLD) = (). t>0  (6)
a0(1, oT(l,
éx D4, éx D B0 = 620, t>0. ()

The set of equations (1) and (2) have been solved by
Luikov and Mikhailov [9] addressed to various types of
boundary conditions. They have also examined a situ-
ation where the specific flux of mass varies continuously
with time. Boundary conditions (6) and (7) represent
still more general cases where the source terms ¢;(1),
(j = 1,2) are certain unknown functions of time, to be
determined by the experiment. 4;, B; (j = 1,2) are ther-
mophysical coefficients, which are functions of dimen-
sionless transfer coefficients.

The dimensionless variables and the dimensionless
thermophysical coefficients are defined as

x*

R’ dimensionless space variable

v(x*, 1) —v, . .
—————, dimensionless temperature

wo —w(x*, 1 . . ) .
0(x,7) = M, dimensionless moisture potential
Wo—W,
p(H}O - w7p)cm
cq (US - UO) ’

an

Lu=—, Luikov number
aq
(v, —vo) bo)

Wo—Ww
P

Ko = Kossovich number

Pn = Posnov number

o, R .
Bi, = :’T , Biot number heat transfer
q

o, R .
Bi, = ——, Biot number for mass transfer

I.R
Ki, = —"—— dimensionless heat flux

! /Iq(vrivo) ’

where a,, a,,, etc. are defined in the Nomenclature.

3. Solution procedure

The matrix differential equation is appealing by its
close similarity to the differential equation, and in a way,
offers the possibility to unify the system given in (1)—(7).
Therefore we have the system in the matrix notation as:

2
0Z(x,7) _A 2
0t Ox2

subject to the initial and boundary conditions:

Zy = Z(x.0) — (g](x)) 0<x<l

, 0<x<1, >0 (8)

g>(x)
20,7y —Ki,

P =Q= (—PnKi,,)’ >0 9
NM—I—MZ(I 7) =H(r), t>0 (10)
where

T(x,7)
ﬂ&ﬂ_<ﬂxﬂ>
<¢1(T)>
$2(1)
A 1+eKolLuPn —eKolLu
B —Lu Pn Lu >

N =

B=A"'
1
(o 1)
and

A] BI

:<o B)’
For the boundary condition of the third kind, the ther-
mophysical coefficients assume the following values:

A, = Bi, A,=Pn

B, = —(1—¢) Ko Lu Bi,,, B, = Biy,
¢ () = Bi, V(1) —(1—¢) Ko Lu Bi,,, $,(t) = Biy,
where V,(7) is a dimensionless ambient temperature and
matrices A, B, M, N and Q have their elements which are

functions of dimensionless transfer coefficients.
The system under the Laplace transform provides:
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% +YBZ(x,5) = —BZy(x), (0<x<1,t>0)
X
(1D
4209 _Q (1)
dx s
NdZ(1,s) - -
T_|_MZ(1,5) = H(y). (13)

Equation (11) is a nonhomogeneous matrix differential
equation therefore its solution is formidable. However, if
the general solution of the corresponding homogeneous
differential equation is known, then the solution of the
matrix differential equation (11) can be arrived at by the
method of variation of parameters [22]. The method of
variation of parameters permits the solution of (11) sub-
ject to the conditions (12) and (13) in the form:

Z(x,s) = (cosh /Bsx)C, (s)
+ (sinh /Bsx)C, () + G (x, )

G(x,s) = \\//ﬁ JX [sinh /Bs(x—x")]Z, (x") dx’
N

C,(s) = (Bs)~ 2 [% -G, x(0, s)}

C, (s) = [N\/Bssinh/Bs+M cosh ./Bs] ' K(s)
K(s) = A(s) —NG,x(1,5) —MG(1, 5) — (Ny/Bscosh . /Bs

+Mssinh /Bs)(Bs)(Bs) '/ <9 (‘;,x(o,s)>. (14)

o
and G, x(x, s) denotes the derivative with respect to x.

In view of Appendix A, equation (14) assumes the
form:

Z(x,s) = (T(x’ S)>

where

T(x, s) = <<133(5)Q_2(5)_<l-54(5)p2(5)_§1 (s)>cosh WI\/EX

A(s)
L (PP — <¢>A_3((Ss))Q1 O =826 b o
+CH(s) sinh wy /sx+ C(s) sinhwa/sx+1, (x, 5)
(15)
0(x,s) =

1 [{3(9)05(5) = ha(s) Pa(s) — S ()Y (1 —wi)
¢ Ko A(s)
x cosh wl\/gx

(Ps(9)P1 ()= P3(5)0:(5) = S>(s)>(1 —w3)
+ c
A(s)

x cosh wz\/;x

+ C#(1 —w}) sinh w,/sx+ C¥(1 —w3) sinh wz\/;x:|

+(x,9)  (16)
where S| (s), S,(s), etc. are given in Appendix A.
Employing the expansion theorem and convolution
property of the Laplace transform [24], we have the orig-
inal of Z(x, s) in the form:

T(x, r))

Z(xm) = (9(x )

T(x,7) = ;(—1)3""<W37,/(X7 )*¢5(0)

Yo 0D (@ — Y (S (4) COS Wt

+8,2 (1) cOs wou, X e+ (Rywy + Row,) X+, (x, 7).

a7
IR
- _1)3— ] *
0069 =~y LD W 097,
— Y506 0)*¢.(0)>(1 _W,/z)
1 & )
- mn;l <Sn1 (un)(l 7”1)(:05 wiu,x
+ 8,5 (1,) (1 —w2) cos wyu,xde "
1
— — Ry (1—=w}) + (Ryw, (1 =w3) x4+, (x,7)
e Ko
(18)

where S, S,., etc. are given in Appendix B. The u,
(n=1,2,...) are roots of characteristic equation
E(u,) = 0, where

E(u,) =P 0pn—Pp0n. (19)
In view of the initial and boundary conditions, the general
expressions obtained for transfer potentials describe a
large class of heat mass transfer phenomena including
the radiative heat transfer. On specializing transport
coefficients involved in the boundary conditions, the solu-
tion to numerous specific one-dimensional, time depen-
dent heat and mass diffusion problems encountered in a
large variety of applications may be obtained as a special
case.

4. Application

In many practical situations without loss of generality
[2, 11,12, 18], the initial distributions and source func-
tions are assumed to be constant. The explicit expressions
for transfer potentials in case of the boundary conditions
of the third kind at x = 1 can easily be written from the
general results (17) and (18) after ignoring the inter-
mediate steps as follows:
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0 2
T(x,t) = 1-K, — K, + (R, W, + Ry Wy)x+ Z Z

n=1j=1
(A% +Goa ) COSWU,X e e (20)
1
00x.7) = 1+ <K (1=w) +K; (1—w3)
— (R W (1=wi) + (Ry W5 (1 —w3))x])

1 w2

~ % S N (AE+ Gy (1 —w?) cos wyu,xe "
n=1j=1

@1

where K|, K,, etc. are given in Appendix B.

5. Discussion

It can be seen from equation (19) that there is an
infinite number of roots u,, u,, ..., and each subsequent
root is greater than the previous one. The roots have been
computed with the accuracy of seven decimal places by
using a novel technique which evaluates real as well as
complex roots and is quite different from the numerical
procedure adopted by Lobo et al. [17]. This technique is
a combination of the bisection method which determines
the real roots and Newton—Raphson method utilising the
complex arithmetic determines the complex roots. The
numerical procedure chosen in this paper is promising
and attractive in the sense that it requires only one input
parameter for the evaluation of a number of pairs of
complex conjugate roots, whereas Lobo et al. [17]
employed a procedure using IMS Library (Zanlyt) to
compute the complex roots of the transcendental equa-
tion (19). In order to check these results with a different
scheme, the Downhill method which evaluates the com-
plex roots of the transcendental equation was employed.
Both these methods needed a starting value of the com-
plex eigenvalue as an input parameter. To select a starting
value, one has to search for a domain where a pair of
complex conjugate roots might exist. This was deter-
mined by them employing the method by Ward. Utilizing
these methods, they could find only one pair of complex
conjugate roots after an exhaustive search. Liu and
Cheng [18] employed the procedure adopted by Miiller.
They also obtained only one pair of complex conjugate
roots. In order to study the influence of the inclusion of
the complex roots on the dimensionless temperature and
moisture distribution and also on the local rate of drying,
the following dimensionless parameters as reported in
Mikhailov and Shishedjiev [21] and Lobo et al. [17] with
some additional values of Bi,, are considered:

e=02,08, Lu=04, Pn=0.6, Ko=5.0,
Ki, =09, Bi,=25, Bi,=1.0,25,5.0,10.0.

It is noticed that for each set of the values of the evap-
oration number ¢, the computational technique

implemented on IBM compatible PC/AT 386 evaluates
40 real as well as a number of pairs of complex conjugate
roots and takes less than 60 s of CPU time which is shown
in Table 1. Here it is interesting to note that out of 40
roots, for the dimensionless mass transfer coefficients of
interest Bi, = 1, 2.5, 5 and 10, we get, respectively, one,
three, three and nine pairs of complex conjugate roots.
In order to verify whether these complex roots occurring
in Table 1 satisfy the transcendental equation or not, we
set u =a+if and E(u) = E\(«, f) +iE,(, f) where o, f,
E, and E, are real numbers. The numerical values of
E (o, p) and E,(x, ff) obtained by this technique with some
additional complex roots by extending the domain in the
u-complex plane are shown in Table 2. The numerical
values thus evaluated may be considered to be zero within
the accuracy of our computations showing that these
are the roots of the transcendental equation E(u) = 0.
Figures 1 and 2 exhibit the influence of the inclusion
of the complex roots on the temperature and moisture
distribution at various dimensionless times t© = 0.05, 0.2,
0.4, 1.6. The dotted curves denote the results cor-
responding to the real roots only whereas the continuous
curves represent the results based on the use of both the
real and the complex roots. Obviously the contribution
of complex roots is more pronounced for early times and
compares well with that of Lobo et al. [17] where they
have considered only one pair of complex conjugate
roots. The effect of inclusion of complex root on the local
rate of drying is also depicted in Fig. 3. It is noticed
that for early times, it has significant influence. Similar
behaviour is also observed in the case of ¢ = 0.8. The
influence of the inclusion of the complex roots for the
value of ¢ = 0.8 on the temperature and moisture dis-
tribution are shown in Figs 4 and 5 and it is found that
here also for early times results are significant and do not
compare with that of Mikhailov and Shishedjiev [21]
because they have overlooked the inclusion of complex
roots in their solution. The influence of other dimen-
sionless parameters on transfer potentials and rate of
drying has also been studied (not shown here) and a
similar behaviour is found. It is therefore essential to
include the complex roots in order to get a qualitatively
true picture of the temperature and moisture distri-
butions, their average values and the local and average
rate of drying. This shows that an analytic solution of
the Luikov system of coupled heat and moisture diffusion
problems addressed to the linear type of boundary con-
ditions have all to be reviewed since it seems that under
certain conditions the transcendental equations have
complex roots which are not included in the original
computations.

6. Conclusion

The solutions for the dimensionless temperature and
moisture distribution obtained by the matrix calculus
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Table 1
Characteristic roots of the transcendental equation Pl(u)=* Q2(u)—P2(u)*Q1l(u) =0 for different values of Bi,
(6=02,K,=5.0,P,=0.06,L,=0.4,Bi,=2.5)

Bi,, = 1.00 Bi,, =2.50 Bi,, = 5.00 Bi,, = 10.00
0.5151887 0.6383109 0.6936044 0.7233486
1.3430031 1.6831976 1.8072700 1.9267839
1.7917267 +0.1629899 +0.2748241 +0.3014619
3.5245321 3.6156235 3.7075735 3.7824414
4.2275905 4.3637485 4.7352348 4.9937089
5.1680663 5.1139688 4.9146338 +0.4187257
6.8976957 6.9199545 6.9494397 6.9883604
7.6257266 7.7105249 7.8775266 8.2851406
8.5891456 8.5575339 8.4872077 +0.2457756

10.3113469 10.3144293 10.3189025 10.3259476
11.1611546 11.2274913 11.3495908 11.7202218
12.0155292 11.9922605 11.9431618 +0.1316761
13.7348880 13.7320374 13.7276803 13.7201695
14.7438127 14.7991141 14.9001927 15.2010663
15.4435756 15.4242334 15.3830218 +0.1162802
17.1618068 17.1570431 17.1495146 17.1357782
18.3478767 18.3963569 18.4879401 18.7010367
18.8722524 18.8543561 18.8135409 +0.1439593
20.5901615 20.5848723 20.5763219 20.5600985
21.9636537 22.0097061 22.1161275 22.2112198
22.3009336 22.2813460 22.2189079 +0.1606051
24.0192306 24.0139282 24.0052171 23.9882088
25.5882808 25.6696243 25.6889970 25.7276686
25.7277073 +0.0166561 +0.0907089 +0.1477532
27.4486985 27.4435705 27.4350422 27.4180167
29.1859147 29.1962785 29.2135836 29.2482969
+0.0140942 +0.0387784 +0.0566025 +0.0693325
30.8784086 30.8735117 30.8652866 30.8485602
32.5957168 32.5977951 32.6007201 32.6050999
32.8349623 32.8515793 32.8799485 32.9386607
34.3082753 34.3036100 34.2957052 34.2793596
36.0243953 36.0233019 36.0216468 36.0188426
36.4672646 36.4854055 36.5156707 36.5764718
37.7382473 37.7337871 37.7261656 37.7101408
39.4539993 39.4519222 39.4486660 39.4428176
40.1002076 40.1179914 40.1476870 40.2074841
41.1682908 41.1639922 41.1565783 41.1406936
42.8838960 42.8814472 42.8775285 42.8702386
43.7340465 43.7511237 43.7797654 43.8379630
44.5983805 44.5941798 44.5868495 44.5707524

+: Imaginary part of complex root with real part just above it

form sufficiently general expressions from which solu- is felt to be of practical importance because the complex
tions to many specific one-dimensional, time dependent roots have been overlooked in the earlier contributions.
heat and mass diffusion problems encountered in a large

variety of applications may be obtained as a particular Acknowledgement
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Table 2
Complex roots of the transcendental equation Pl(u)* Q2(u)—P2(u)*Ql(u) =0 for different values of Bi,
(6=02,K,=50,L,=04,P,=0.6,Bi,=2.5)

Bi,, Complex root = o+ ifs E(u) = E (o, f) +iE,(, )
o p E, E,
1.00 29.1859147 0.0140942 0.000000000000 0.000000000000
1.00 149.2260709 0.0047647 —0.000000000001 0.000000000000
2.50 1.6831976 0.1629899 0.000000000642 0.000000000562
2.50 25.6696243 0.0166561 —0.000000000107 —0.000000000039
2.50 29.1962785 0.0387784 —0.000000004783 —0.000000001351
2.50 58.3026230 0.0229925 —0.000000000000 —0.000000000000
2.50 149.2280818 0.0093330 —0.000000000000 —0.000000000007
5.00 1.8072700 0.2748241 0.000000000000 0.000000000000
5.00 25.6889970 0.0907089 0.000000000000 0.000000000002
5.00 29.2135836 0.0566025 —0.000000000001 0.000000000001
5.00 58.3111978 0.0425494 —0.000000000002 0.000000000001
5.00 149.2314335 0.0132844 0.000000000000 —0.000000000000
5.00 298.4402481 0.0066737 0.000000000000 0.000000000000
10.00 1.9267839 0.3014619 —0.000000000001 —0.000000000000
10.00 4.9937089 0.4187257 —0.000000000000 0.000000000000
10.00 8.2851406 0.2457756 —0.000000000002 0.000000000000
10.00 11.7202218 0.1316761 0.000000000027 0.000000000017
10.00 15.2010663 0.1162802 —0.000000000000 —0.000000000000
10.00 18.7010367 0.1439593 —0.000000000000 0.000000000000
10.00 22.2112198 0.1606051 0.000000000000 0.000000000001
10.00 25.7276686 0.1477532 0.000000000351 —0.000000000287
10.00 29.2482969 0.0693325 0.000000000000 —0.000000000000
10.00 58.3283456 0.0627075 0.000000003141 —0.000000000952
10.00 87.4460365 0.0394649 0.000000000000 —0.000000000000
10.00 149.2381375 0.0169651 0.000000000188 —0.000000000175
10.00 178.3708748 0.0209960 —0.000000000000 0.000000000000
10.00 298.4435985 0.0131457 0.000000000000 0.000000000000
Appendix A

1 2 4 1/2
— [(1 +¢ Ko Pn+ 7) — 7} }
The matrix B is diagonalizable and it can be expressed Lu Lu
in terms of characteristic roots and characteristic vectors. and P is the matrix of eigenvectors obtained from B as
In the light of this, B can be written as [23] 1 1

B = PDP"! P=| a-w? (1—w?)
¢ Ko ¢ Ko

where D is a diagonal matrix of order 2 x 2 containing

characteristic roots 4, and /,. and
| | _d=wy)
2 =1vf=§{<l+sKoPn+f> ¢ Ko
u P = (wh) (w3 —w})(e Ko) .
—wi
1 2 4 1/2 - 7 1
+|:<1+3KOPn+ Lu> - Lu:| } ¢ Ko

In view of this we can write
B> =B‘B = PD*P!
and

1 1
Jy = w3 = §{<1+3K0Pn+ E)
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Fig. 1. Effect of inclusion of the complex roots on dimensionless temperature vs. dimensionless distance (¢ = 0.2; Ko = 5.0; Lu = 0.4;
Pn = 0.6; Bi, = 2.5; Bi,, = 2.5; Ki, = 0.9).
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Fig. 2. Effect of inclusion of the complex roots on dimensionless moisture potential vs. dimensionless distance (¢ = 0.2; Ko = 5.0;
Lu=0.4; Pn = 0.6; Bi, = 2.5; Bi,, = 2.5; Ki, = 0.9).
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Fig. 3. Effect of inclusion of the complex roots on dimensionless rate of drying vs. dimensionless time (¢ = 0.2; Ko = 5.0; Lu = 0.4;
Pn = 0.6; Bi, = 2.5; Bi,, = 2.5; Ki, = 0.9).
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Fig. 4. Effect of inclusion of the complex roots on dimensionless temperature vs. dimensionless distance (¢ = 0.8; Ko = 5.0; Lu = 0.4;
Pn =0.6; Bi, = 2.5; Bi,, = 2.5; Ki, = 0.9).
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B'=B>-B=PD'P .

The above can be extended to yield

0 0

fB)=> aB" = P(Z oc,,D”)P*l

:P(uo

P . (Al
0 fU-z)) A

The above expression provides an efficient way to
evaluate a function of diagonalizable matrix in terms of
eigenvalues and eigenvectors. Further, the eigenvalues of
B are real and positive, we can write

w, 0
JB=P < >P*‘
0 w,
and
wi! 0
B '? :P< )P’] (A2)
0 wy!
and in view of (A1), we have
fowy) 0
J/B) =P < )P‘l, etc. (A3)
VB 0 fln)

For instance

0

sinhw, /s
sithBs:P( ]\/ )P”,etc.
sinh wz\ﬁ
(A4)
Utilizing these concepts to the solution in the matrix form
given in (14), we get the result mentioned in (15) and
(16), where S, S, etc. are obtained in the form:

$1(9) = CHOG () + CHO G4 (s)
S, (5) = C¥(5)G, (5) 4+ C¥(5) G5 (5)
G (5) = O5(5) Py (5)+ P5(5)01 (5)
G1(5) = Q4(5) Py (5)— Py ()01 (5)
G5(5) = P5(5)0,(5) — P2 ()05 (5)
G4(5) = Py(5)0:(5) — P2(5)04(5)

U (x,8) = 7y (5) J\‘ Y(x's) sinh w, \/;(x—x/) dx’

+75(s) f W (x's) sinh w, \ﬁ(x —x")dx’

7 N (A=W (x,5)+ (e Kogs +91)
Valx.) = eKos

_ S
V(x,s) = —A.(¢Kog,+g,)+ 91
Lu
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(Z’B(S) = ['ﬁl(S)_(l/;lh\»(l,s)+Allpl(1>S)+Bz'f;2(1as))]
Gu(8) = [W2() — (o (1,9) + Aot ((1,9) + B (1,9))]

1
) =——""—"—"
wy (W3 — w?)s\/;
1

P)=—"""-
wy (W3 — w?)s\/;
62
A, =
ox?
Ki (1—w3+¢ Ko Pn)
Ri(s) =— 72 N
wi(w; —wy)
Ro(s) = Ki,(1—w? +¢ Ko Pn)

wi (W —w3)
P(s) = wi/ssinhw,/s+ M coshw,y /s
0,(s) = MPw,/ssinhw,/s+ MY coshw, /s
Py (s) = wi/scoshwyy/s+ M sinhw /s
0,.2(5) = MYw,/scoshw,/s+ MY sinhw, /s

. (1—w?)
MY =A,—B :
1 1 1 EKO
. (1—w?)
MY = A, — J
: ? e Ko
_ 1—w?
my = —p, 120 sK’;’) j=12)
R,
Ci(s) = —
: /s
and
R,
Ci(s) = .
! S\/;
Appendix B

The elements of Z(x, s) contain the terms ¢5(s), d.(s),
the true nature of which is not yet defined. Therefore, in
order to determine the original of Z(x, 5), one will require
the expansion theorem where the expression contains
all the well-defined terms such as P, Q, etc. and the
convolution theorem for the terms ¢;(s), Pa(s).

Employing these theorems [24], we obtain the original
of Z(x, s) in the form

T(x, ‘c))

B1
0(x, 1) (B1)

Z(x,1) = (
where the transfer potentials 7'(x, 7) and 0(x, t) are given
by (15) and (16) with

S _ Rl Gn3 (un) + R2 Gn4 (un)
nl —
.fl‘l

- R\G, (u,)+R,G,»(u,)

S/12 - f;,

" Z Q3 COS W, X
W3,/-(x,17) ¢5(v) = Z ] /
n=1 n

T
X J e gy (r—1)dr

0

Z P, coswu,x

= S

Y ;(x,1)*¢4(7)

x J e Ty (r—1)de’

0

P, = MY coswu, —wu,sin w;u,

0, = MY coswu,— MY wu, sinwu,
Poii = wit, coswiu, + MY sinwju,
Qv = MY wu, cos wiu, + MY sinwu,

f;z = PT(”V[)Q2 (uﬂ) + Pl (u,,)QE“(un)
_P’;(un)Ql (un) - PZ (un)Q’ZK(un)

w; A .
; .
P = o (MY +MY)sinwu,
n
+ MY wu, cos wu,] (B2)

and u, (n =1,2,3,...) are the roots of the characteristic
equation

Py () Qs (u) —P(w)Q, (u) = 0. (B3)
As a particular case when energy and mass transfer takes
place according to the convective law and the initial tem-
perature and moisture distributions are constant then the
source terms and aggregate of the dimensionless thermo-
physical coefficients assume the form:

Z(X,O) :Oa d)l(T) :()b(l) :Biq_(l_g)KOLuBim
d1(7) = ¢g = Bi,, A4, = Biqv Ay, = —Pn
B, = —(1—¢) Ko Lu Bi,,, B, = Bi,,.
Making use of these values in the general results (17) and

(18) we get after a series of algebraic manipulation, the
results given in (20) and (21) where

R {(I+M)M — (ML + M )M Hw,
+RAA+MP)YM P — (M + MP)YM P Hw,

K, =
(MM — M M)
R M+ MOYMED — (14 MO MO S,

RO £ MOYMY — (1 M) My,

o (MM — M P M)

0 0
i —H Pn —Jj
A;Z:(—l)/[¢IQ”(3 /)7 ¢2 3 /)]7 (]: 1,2)
Unfo

G.= Rl (Pn3 Qn2 _PnZQn3) _R2 (Pn4Qn2 _Pn2 Qn4) (B4)

ns ugf;l
and
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Rl (Q)ISPnl _Pn3in)_R2(Plen4_P114Ql11)

3
u/n n

Gnﬁ =
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